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It is shown that the “average charge” model for calculating the Madelung energy of an ideally 
disordered crystal gives the correct mean lattice energy, and that only defect terms need be considered in 
deriving the energy of ordering of a distribution of vacancies or altervalent ions. A completely random 
arrangement of such defects results in a very large spread of electrostatic potentials at the ion sites, 
because of the possibility of unreasonable local charge aggregations. Many sites have highly unfavorable 
potentials, and it is concluded that a completely random disordered arrangement of vacancies or alter- 
valent ions is only possible in very small domains, so that the magnitude of local charge unbalance is 
limited. 

Introduction 

Calculation of the electrostatic energy of 
various crystal lattices has become popular in 
solid state chemistry and crystallography as 
an approach to decide between alternative 
models or to explain order/disorder 
phenomena. 

A recent letter by Giese (1) criticizes the 
method as applied to disordered crystals on 
the grounds 

(a) that there are many possible ordered 
arrangements of ions which give electrostatic 
energies very close to that of the optimum 
structure, and very much more favorable than 
that of the “average charge structure”; 

(b) that if the average charge model 
truly represents the fully disordered structure, 
it is inconceivable from (a) that such a 
structure exists; and 
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(c) that the use of an average charge for 
disordered ions is in any case invalid because 
on the level of the individual unit cell each ion 
is unique and cannot conform to some 
fictitious “average ion.” 

Giese’s letter (I) was written in response to 
our calculations on ixiolite (2), where we had 
already come to his conclusion (b), and had 
suggested that although apparently disor- 
dered, ixiolite in reality consists of small 
ordered domains which may differ in 
composition and/or structure. The dis- 
crepancy between the energies calculated for 
ordered and disordered structures has long 
been known (3) but Giese’s conclusion (a) 
now suggests that a mixture of dz@zrent 
ordered domains will be nearly as stable as a 
fully ordered equilibrium structure. Examples 
of such “mixed domains” are multiplying in 
the solid state literature. Specifically, many 
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oxid.es (4) and the iron sulfides (5) show 
domains on a very fine scale. De Bergevin 
and Brunel (23) have drawn attention to the 
entropy implications of different structures 
with similar energies. 

Mean Lattice Energy 

We here address ourselves to the average 
charge model (conclusion (c)) and show that 
this model gives the correct mean lattice 
energies for randomly disordered structures. 
The individual nature of each unit cell, 
however, is expressed in the electrostatic 
potential at an ion site, which may vary 
greatly from cell to cell. 

Bertaut in 1953 (3) derived the excess 
energy of ordering by dividing it up into a 
periodic and an aperiodic part, the latter 
depending on the actual distribution of each 
type of ion. The result was equivalent to the 
random charge model for a situation involv- 
ing both vacancies and cation ordering. His 
method was extended by Brunel and de 
Bergevin (12), but is considerably more com- 
plex than the average charge model. 

The average ion concept was originally 
applied to fluorite oxide systems in which up 
to 12.5% of the oxygen sites are assumed to 
be vacant in a fully or partially random 
manner (6, 7). Such an oxide can be easily 
visualized, and may be used as a model 
system, assuming the anion lattice to contain 
a fraction v of vacancies inserted at random. 
We will not consider the cation lattice, which 
for simplicity may be assumed to be fully 
ordered, but with cation charges reduced by 
the factor (1 - v). In these circumstances the 
only terms due to the vacancies which affect 
the mean lattice energy are the potentials at 
the cation and anion sites due to the anion 
lattice. (The mean lattice energy involves the 
sum of all the products of site potentials with 
the charges occupying those sites). All the 
anion sites lie on a series of spheres or shells 
about an anion or cation site. Let the radius 
of the jth shell be RI and suppose that it 
contains Nj sites. 

Consider a large number of sites within a 
fixed anion lattice having a completely ran- 
dom vacancy distribution, The difference dVi 
between the potential at the ith site calculated 
on the assumption of the average charge 
model and the actual value calculated for the 
assumed vacancy distribution about the site is 
determined by the differences dCij between 
the average charge at a site on the jth shell 
(centered at i) and the average charge calcu- 
lated over the whole lattice. Now the potential 
difference between the average and actual 
distributions, at site i due to the jth shell 
about i, is AVij = (N,IR,)AC,, and so the 
overall potential difference at i between the 
distributions is 

k N. dvi=-pdcij. 
j=l Ri 

Thus the mean potential difference over m 
sites in the same lattice is 

But for a large array the mean charge 
difference (l/m)~~!,X, will be zero for each - 
shell j, and hence d V = 0. 

An alternative derivation refers to the 
potential at a central site averaged over a 
series of different uncorrelated completely 
random vacancy distributions, but it gives the 
same result, that the potential calculated from 
the average charge model, in which a charge 
of -2(1 - v) is considered to exist at each 
anion site, is equivalent to the potential 
calculated for a random model in which on 
the average a fraction 1 - u of the sites in 
each shell are occupied by an anion of charge 
-2. 

In the second derivation, assume a random 
number Yj of sites on shell j to be occupied 
(Yj may be fractional because it is an average 
over many distributions). The expected value 
of Yi is (1 -a)!$ The potential at the center 
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due to ions in shell j is -2(YiRj). For a 
random vacancy distribution as above the 
expected value of V is 

x [potential when all sites are occupied]. 

Both derivations are independent of sym- 
metry or structure, and apply equally to 
positive or negative ions or to a combination 
of both, since potentials are additive. There is 
no restriction on the number of sites Nj in a 
shell, but the assumption is made that the R, 
are the same for fully and partly occupied 
lattices; i.e., that there is no positional relaxa- 
tion around a vacancy. This point will be 
discussed briefly later. It is not the basis of 
Giese’s criticism. 

The Relationship between Vacant Site Poten- 
tials and Madelung Energies 

Madelung energy calculations on vacancy 
structures are greatly simplified by a relation- 
ship which exists between the potentials at 
vacant sites and the Madelung energy of the 
lattice. This relationship was used extensively 
in another paper (IO) but was not discussed 
there. 

As in the previous section we will take the 
cation lattice to consist of ions whose charge 
is reduced by a factor (1 - u) to compensate 
for the missing anionic charge. 

In what follows, superscripts o and d refer 
to ordered and disordered defect structures, 
and p to the perfect structure. 

The Madelung energy Uo of a defect 
structure with ordered anion vacancies is as 
follows: 

u-d 

+ 1 .q&“,* +; -ql -v>w,“r” , 

n e 1 
where I&, is the potential at an anion site due 
to the cations in an ordered structure, and the 

asterisk excludes the self-potential of the ion 
in the site under consideration. The sums are 
taken over a unit cell, and the limit u - d 
refers to unit cell contents excluding vacan- 
cies. n is the number of unit cells per mole. 

The first two terms refer to cation-anion 
interactions, and because the energy of an ion 
in the field of another is the same as the 
energy of the second in the field of the first, 
these terms are identical regardless of struc- 
ture or ionic distribution. The remaining 
terms refer to anion-anion and cation-cation 
interactions. 

For a disordered structure the Madelung 
energy is 

+ c %#,“,* + ,i z,u ->w,“,* * 
a c 1 

The unit of structure over which the 
summation is performed must, of course, be 
large enough to be a fair sample of the dis- 
ordered structure. Again, the first two terms 
are identical because of a reciprocity relation- 
ship, and since for our model I& = I&, they 
are the same as in the ordered case. Similarly 
d = w:i, so that energies due to cation- 
cation interactions are the ‘same in Ud and 
U”. Only the anion-anion interactions lead to 
differences between Ud and the various U” 
possible: 

A symbol v,, is now introduced for the 
potential which would be added at an anion 
site if the vacant sites were replenished with 
anions. Then 

wo,;= &I- ti” and d= tii- 4” 

and 

IJO- ud=+ 
[ 

u~dZov~v- 
u-d 

c TN:” 1 * ll a 
Each sum in this equation concerns the 

energy gained by the remaining anions due to 
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the change va,,, in their potential when the 
vacancies are created. There is again a 
reciprocity between this energy and an 
equivalent energy gained by the vacating 
anions when they are removed from the 
potential vya due to the remaining anions, so 
that 

u-d d 

a a 

where the superscript, d, indicates that the 
sum is taken only over the vacant sites in the 
chosen unit of structure.’ In the disordered 
case, the expectation value of I& is no 
different from vii, the potential at remaining 
anions. Therefore: 

That is, the difference in Madelung energy 
produced by vacancy ordering is totally 
reflected in the potentials at the vacant sites 
due to the remaining anions. 

Variance in Potential at Anion Sites, and the 
Possibility of Random Structures 

By considering the variation of potential at 
sites in the lattice due to a random vacancy 

‘This identity is perhaps more obvious if I& and I&, 
are expanded thus: 

u-d m  

arrangement, we can arrive at a new 
approach to Giese’s conclusion (b), that a 
fully disordered structure cannot exist. This 
approach arose from a computer simulation 
model which we set up in an attempt to 
demonstrate numerically the results of the 
previous sections. An array of 216 000 sites 
was represented by 4K 60-bit words. Vacan- 
cies were represented by ones and anions by 
zeroes, and the vacancies were introduced by 
a masking technique in which vacancies were 
placed one at a time using a random number 
generator. Constraints can be easily intro- 
duced as required, to ensure that no two 
vacancies are nearest neighbors or second 
nearest neighbors. 

Unfortunately our array was not big 
enough to allow convergence of the potential 
difference LIP’, but the results indicated a 
surprising variance in the potentials calcu- 
lated for different sites. The potential at many 
sites appeared to indicate values which could 
even have the wrong sign to contain the ions 
supposedly present there. Introduction of the 
constraints reducing the degree of disorder 
reduced the spread of potentials, but even 
with second nearest neighbor vacancies for- 
bidden, the variation was highly significant. 

The variance can be calculated from the 
second model of the second section using 
standard sampling arguments for a given total 
number N of atom sites and a fraction u of 
vacancies, incorporating the negative corre- 
lation between vacancies in any given shell 
and those in other shells in the lattice. The 
result (see the Appendix) is 

and 

w” = ; ;J ZJ I C& + r,I 
Var( V) = 

(1’V 
a*a / 

where raO, is the vector separating anion site and 
vacancy, and r, is a lattice vector for the total structure. 

Since for our cubic model the Nj can be 

Each side of the identiy then appears as the same triple obtained from the multiplicities of the indices 
sum: hkl for a cubic lattice, the variance is readily 

u-d d m  

2 1 2 Z,*/ I raaC + q I 
calculable. If the variance is plotted as a 
function of the radius R of the entire a’ n*n I 

d u-d a! randomly sampled volume (Curve B, Fig. 2), 
= 1 1 C Z,*/ I r,,, + rl I. or for large N if it is plotted as a function of 

a n’+n I the radius R, of the outer shell being 
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FIG. 1. Cumulative curves showing how the standard deviation of the potential at a site is built up as more and 
more atoms are considered. Rj is the radius of the last shell included in the calculation. Curve A: random volume 
infinite. Curve B: radius of random region 120 A. Curve C: radius of random region 16 A. The experimental curve 
for the cubic model has a similar shape (Curve D). A calculated standard deviation for a sphere containing the 
same total number of atoms as the cube D is shown by point E. 

evaluated (related to Curve A, Fig. 1) an 
approximately linear increase is obtained 
without limit. Figure 1 shows how the 
standard deviation is built up shell by shell 
for large and small N, and Fig. 2 shows the 
variation of the standard deviation o with 
radius of the region. In each case we have 6% 
vacancies. Similar figures may be derived 
with somewhat more effort for lower sym- 
metry structures, and the variation of poten- 
tial at points near the ideal sites can similarly 
be calculated. 

As we pointed out in (2), the 02- ion is 
unstable at potentials below 0.7 units and if 
we assume an average oxygen site potential 
of 1.6 units and a Gaussian distribution of 
deviations we can show that for a o of only 
0.3, the proportion of unsuitable sites 
becomes significant. When (T reaches 0.5 a 
significant proportion of the site potentials 

change sign, so oxygen ions cannot possibly 
be distributed randomly in this manner. They 
will be excluded from these unfavorable sites 
during the formation of the distribution, or at 
least will lose their charge, thus decreasing 
still further the effective electrostatic energy 
of the crystal. Since a u of 0.3 (0.7) corre- 
sponds to a radius of the random region of 7 
8, (11 A), the maximum size for a region of 
completely random disorder with a propor- 
tion of 6% of vacancies is between 7 and 11 
A. For 3% vacancies the radius is between 9 
and 17 A, while for 1% vacancies it is 
between 40 and 100 A. 

Similar results apply to other anions and to 
cations, but it should be remembered that this 
calculated variance is essentially an average 
(squared deviation from the mean) at a 
central site over a series of uncorrelated 
completely random vacancy distributions. 
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Radius of Random Region 

1 

FIG. 2. Variance (Curve B) and standard deviation (Curve A) of the potential at a point in the lattice as a function 
of the radius of the random region. 6% vacancies. 

The variance over a number of sites within a 
single completely random vacancy distri- 
bution will, in general, be lower because 
potentials at adjacent sites are correlated. The 
difference between the models should dec- 
rease as the size of the distribution increases, 
and computations using the simulation model 
(Curve D, Fig. 1) suggest that this difference 
is not appreciable. 

Discussion 

What is it that makes a completely random 
distribution of vacancies or altervalent ions so 
unfavorable? 

One feature of a large region of vacancies 
arranged completely randomly is that the 
composition can vary considerably from 
place to place, and if there is no correlation of 
anion vacancies with corresponding features 
of the cation lattice, unacceptable charge 
separation can occur. If the random regions 
are limited in size the expected charge separa- 
tion will decrease, and it may be possible to 

compensate for these small charge variations 
by some kind of variable valency mechanism 
in the cation or anion lattice. Such a structure 
would represent a fluctuating composition. In 
Fig. 1, the decrease in standard deviation as 
the maximum radius is approached is prob- 
ably the result of a concomitant approach to 
charge balance. 

So far we have assumed all ions to be 
situated on lattice points; is it possible by 
relaxing the positions of ions surrounding the 
charged defect to alter our conclusions con- 
cerning site potentials and lattice energy? 

Because the relaxation is caused by ions of 
both signs moving to sites of more favorable 
potential, the total electrostatic energy of the 
lattice is increased in magnitude, both 
because of the improved energy of the moved 
ions themselves, and because the effect of the 
vacancy or other defect on the potentials at 
other sites in the lattice is reduced by the 
movements. For the latter reason the fluctua- 
tion in potential at the ion sites is also 
reduced by potential relaxation, but a pre- 
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liminary numerical study of a two- 
dimensional model indicates that positional 
relaxation of ions surrounding a vacancy or 
other defect affects the potential at near 
neighbors only, since on average there are as 
many ions moving away from any given site 
as are moving toward it. Considering the 
expressions for potential and variance ob- 
tained in previous sections, it will be observed 
that individual terms are relatively more 
sensitive to a small variation in Rj when Rj is 
small than when it is large; in addition the 
shells are much closer together at large R,i so 
that positive and negative deviations are 
effectively averaged. Hence where the radius 
of a random region is large (Fig. lA), effects 
of moved near neighbors (i.e., sites near the 
origin) on the variance of site potentials are 
negligible, whereas for small domains they 
may be appreciable (Fig. 1C). 

This means that although, as is well 
known, positional relaxation can appreciably 

increase the electrostatic energy of a structure 
containing a completely random arrangement 
of vacancies or altervalent ions, it cannot 
significantly improve the variation in site 
potentials unless the radius of the random 
region is small. A small random region 
already has a small spread of potentials (Fig. 
2), so it would appear that small random 
regions may not be too unfavorable from the 
point of view of either energy or site poten- 
tials, especially when relaxation is allowed to 
occur. 

There appears to be only one way to 
modify our mode1 to allow appreciable 
volumes containing disordered charged 
defects, and that is to constrain the degree of 
randomness of the distribution of defects. It 
seems likely that interaction of the defects 
with one another and with the lattice will 
result in at least a degree of order. The inter- 
action may be due partly to the strain field 
about a vacancy, which can cause a region of 

Energy 

FIG. 3. Distribution of potentials at approximately 200 anion sites in a model lattice compared with normal distri- 
bution. Both width at half-height and skewness of the distribution from our limited sample decrease markedly as the 
vacancies become less random. (A) random, W,,, = 13.5, (B) first degree of constraint, W,,, = 12.2, (C) second 
degree of constaint, W,,, = 7.1. 
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exclusion to occur (8), and partly to electro- 
static interactions, including charge balance 
requirements over a restricted volume. These 
effects necessitate a new approach to the 
thermodynamics of solutions (9). The effect 
of the constraints mentioned in the previous 
section is shown in Fig. 3, and the exclusion 
of vacancies from nearest and next nearest 
sites is seen to reduce the spread of poten- 
tials at the anion sites. However, even the 
second degree of constraint only reduces the 
width of the distribution by about 50%, so 
there is considerable stability to be gained by 
further ordering the vacancies such that their 
mutual approach is limited, i.e., such that 
vacancies are dispersed. There are generalized 
ordering schemes (IO) applicable to vacancies 
at any concentration, which effectively set a 
lower limit on the efficiency with which 
vacancies are dispersed. Numerous specific 
examples of such ordered phases may be 
found in the literature. De Bergevin and 
Brunel (13) have suggested that disorder in 
ionic structures results from the choice 
between competing possible structures, a 
concept that has been extended by Thornber 
and Graham (14) to explain the metamict 
state. 

A study of Ca-stabilized HfO, and 
ZrO, has shown (II) that these “solid 
solutions” consist of microdomains as small 
as 30-A diameter of ordered calcium com- 
pounds within the oxide matrix. There may be 
different ordering schemes and domain struc- 
tures in other systems, but we believe that the 
overall conclusion is inescapable - that even 
a small amount of ionicity precludes the 
possibility of a “regular” solid solution of any 
appreciable extent. For very dilute solutions, 
an exclusion model may apply (9), while an 
increase of concentration favors domain 
models of various kinds, culminating in a 
fully ordered single phase. 

Summary 

We have shown that the average charge 
model for calculating the electrostatic energy 

of a completely randomly disordered crystal 
formally gives the correct result, although as 
is well known positional relaxation of 
surrounding ions will tend to increase the 
energy toward that of an ordered structure. A 
simple analysis shows that changes in lattice 
energy due to changes in vacancy distri- 
bution are completely reflected in the vacant 
site potentials. 

In addition, we have shown that many sites 
in our completely disordered crystal have 
potentials so unfavorable that the ion which 
should be present will be unstable there, 
making the model unrealistic. Positional 
relaxation does not improve the results unless 
the completely random region is limited to a 
volume whose radius is of the order of tens of 
angstroms. This size limitation seems to be a 
way of limiting the local charge concen- 
trations inherent in a completely random 
structure. 

An almost inescapable conclusion is that 
various interactions between charged defects 
must result in a degree of order in any real 
crystal, and numerical calculations suggest 
that these interactions probably extend 
beyond second nearest neighbors in reason- 
ably dilute solutions. 

Appendix: Calculation of the Variance 

Given a total of N sites in a total of k 
shells of Nj sites, j = 1, 2, . . ., k, we wish to 
remove a total of M sites completely at 
random, where v = MIN is some predeter- 
mined fraction (e.g., 0.06). 

The number Xj selected from the jth shell 
to be vacancies has a hypergeometric distri- 
bution with 

prob(Xj = X) = 

and so we have 

E(Xj) = ; Nj =vNj, 
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var(xj)=i&(l-~)(l-!c) 

MNJN - N,)(N - M) 
NZ(N- 1) 

v( 1 - U>fVi(N - Nj) 

N-l . 

Also the numbers (Xi, Xi) selected from the 
ith and the jth shells have joint hyper- 
geometric distribution 

- 
gg%} I .I 

4U(l - v) 

= N-l 1 
Ni!5 

.j= 1 5; 

prob(Xi = U, Xi = x) as stated in the text. 

4v(l - v) 

= N-l 

k Nzj 
c ./= 1 R.; 

References 

1. 
2. 

and we obtain 3. 

R. F. GIESE. JR., Nature (London), 256, 31 (1975). 

W. W. BARKER AND J. GRAHAM, Amer. Mineral. 
59, 1051 (1974). 

Cov(X,, q = 
-MN,N,.(N - M) 

N*(N - 1) 

4. 

5. 

Now the number of ions Yj remaining in shell 
j has the same variance as Xj and similarly 6. 
the covariance between Yi and Yj is the same 
as that between Xi and XT Thus we compute 
the variance of V = -2Xjk=,(Yj/Rj) as follows: 7. 

Var(v) = 4 i Var (2) 
j=l .I 

8. 

9. 

+4 2 fcov $5, 
1 1 

10. 
[=I j=I I J 

i+j II. 

iicj 

E. F. BERTAUT, Acta Crystallogr. 6, 557 (1953). 

See, for example, “The Chemistry of Extended 

Defects in Non-metallic Solids” (L. Eyring and M. 

O’Keefe, Eds.), North-Hohand, Amsterdam (1970), 

especially the paper by D. Watanabe, 0. Terasaki, 

A. Jostons, and .I. R. Castles, p. 238. 

H. NAKAZAWA, N. MORIMOTO, AND E. 

WATANABE, “Proc. 8th Int. Congr. Electron Mic- 

rose.,” Vol. 1, 498 (1974). 

W. W. BARKER, J. GRAHAM, AND 0. KNOP, in 
“The Chemistry of Extended Defects in Non- 

metallic Solids” (L. Eyring and M. O’Keefe, Eds.), 

p. 198, North-Holland, Amsterdam (1970). 

W. W. BARKER AND 0. KNOP, Proc. Brit. Ceram. 
sot. 19, 15 (1971). 

J. T. IIYAMA, Bull. Sot. Fr. Mineral. Cristallogr. 
97, 143 (1974). 

J. T. IIYAMA AND M. VOLF~GER, Mineral. Mag. 
40, 556 (1976). 

T. C. PARKS AND W. W. BARKER, J, Solid State 
Chem. 20,397 (1977). 

J. G. ALLPRESS AND H. J. ROSSELL, J. Solid State 
Chem. 15,68 (1975). 

M. BRUNEL AND F. DE BERGEVIN, C. R. Acad. Sci. 
Paris 260, 3598 (1965). 

F. DE BERGEVIN AND M. BRUNEL, Bull. Sot. Fr. 
Mineral. Cristallogr. 91, 621 (1968). 

J. GRAHAM AND M. R. THORNBER, Amer. Mineral. 
59, 1047 (1974). 


